
Révisions Bash

P R É S E N T É P A R P S D E R S E T L I T E A P P

Le terminal

• Un terminal est une interface avec le système d’exploitation qui permet de configurer et

de lancer des programmes

• Il transmet ce que l'utilisateur tape via le flux stdin, et il affiche à l'écran les données que

les programmes écrivent dans les flux de sortie stdout (résultats) et stderr (erreurs).

Les processus

• Lorsque l’on lance un programme, l’OS crée ce qu’on appelle un “processus”

• Un processus contient:

• Une zone de mémoire dédiée (pile, tas, le programme lui-même)

• Une sorte “d’état” (à quelle instruction on se trouve, quel est l’état des registres du programme)

• Un identifiant unique (PID (process ID))

• D’autres choses plus complexes…

• Le travail de l’OS est de faire tourner tous ces processus “en parallèle”

Créer un processus

• Pour créer un processus, il suffit d’exécuter la ligne suivante dans un terminal:

• Le premier paramètre est le “nom” du programme (un chemin vers ce dernier, si on ne le

trouve pas, rien ne se passe)

• On peut mettre autant d’arguments que l’on veut, c’est au programme de comprendre ce

qu’ils signifient. Chaque argument est séparé d’un espace.

Les chemins

• Un chemin permet de se déplacer et de désigner les fichiers dans un système de fichiers.

Il y a deux types de chemins: les chemins absolus et les chemins relatifs

• Un chemin absolu s’écrit comme ceci:

• /mon/chemin/absolu pour un chemin partant de la racine de l’ordinateur

• ~/mon/chemin/absolu pour un chemin partant de la racine de l’utilisateur (Attention, c’est différent!)

• Un chemin relatif s’écrit comme cela:

• ./mon/chemin/relatif

• mon/chemin/relatif

• Dépend de où on se trouve dans le système de fichier!

1 / 5 / 2 0 2 6

5

Naviguer le système de fichiers

• Pour naviguer le système de fichier, on peut isoler 3 commandes indispensables:

• ls (list directory contents): Imprime dans le terminal tous les fichiers dans le “current working

directory” ou dans le directory spécifié dans un argument.

• cd (change directory) change le “current working directory”

• pwd (print working directory): donne le chemin (path) absolu du “current working directory”

1 / 5 / 2 0 2 6

6

Les types de fichiers

• Directories (répertoires)

• Des cas particuliers:

• “.” le répertoire actuel

• “..” la répertoire parent

• Les fichiers (de la donnée brute: du texte, un programme, une image…)

• Des cas particuliers:

• Liens symboliques et physiques

• Sockets / Pipes

• On parle pas de /dev

1 / 5 / 2 0 2 6

7

Les liens

1 / 5 / 2 0 2 6

8

Symlink (target va juste pointer vers source)

La variable $PATH

• Il existe une variable globale associée au terminal que l’on appelle PATH qui contient des

chemins. Tous les fichiers de ces chemins sont accessibles depuis n’importe où dans le

terminal.

• Exemple: /bin (où se trouvent ls, mv, cp, mkdir, echo, kill…)

1 / 5 / 2 0 2 6

9

Les scripts bash

• Un fichier comme un autre (par convention, ces fichiers finissent en .sh)

• Regroupe une liste de commandes à exécuter

• Peut être exécuté par un utilisateur (comme un programme*)

• On peut récupérer la sortie pour l'utiliser autre part avec la syntaxe $(echo "bonjour")

1 / 5 / 2 0 2 6

1 0

Créer un fichier bash

• Étape 1: créer le fichier

• Par exemple: touch my_bash_file.sh

• Étape 2: ouvrir le fichier et écrire ce que l’on veut

• Par exemple:

• Étape 3: autoriser l’exécution du fichier

• Par exemple: chmod +x my_bash_file.sh (par défaut, on ne peut pas éxécuter n’importe quel

fichier sur l’ordi ! (encore heureux))

1 / 5 / 2 0 2 6

1 1

Créer un fichier bash (2)

• Étape 4: lancer le programme

• Par exemple: ./my_bash_file.sh

1 / 5 / 2 0 2 6

1 2

Les variables en bash

1 / 5 / 2 0 2 6

1 3

Le Branching

1 / 5 / 2 0 2 6

1 4

Quesque $1?

• $1, $2, $3 … Les arguments passés au programe ($0 le chemin spécifié du programme)

• $# Le nombre d’arguments du programme

• $? Le return code du dernier processus qui a fini de s’exécuter (0 si tout va bien)

• $$ Le PID du shell

• $! Le PID du dernier programme mis en arrière-plan

• $@ renvoie la liste $1 $2 $3 …

• …

1 / 5 / 2 0 2 6

1 5

Les loops

1 / 5 / 2 0 2 6

1 6

Le shift décale tous les $1, $2, $3 etc...
vers la gauche, et mets a la poubelle
$1… TRÈS PRATIQUE!!
Le shift ne modifie pas $0

Interagir avec les fichiers

• 3 opérations

• > écrire en écrasant le contenu

• >> ajouter à la fin du fichier

• < lire le fichier

1 / 5 / 2 0 2 6

1 7

Les flux

• 3 flux « standards » :

• stdin (0) → entrée

• stdout (1) → sortie

• stderr (2) → sortie

• On peut en ajouter d’autres

exec [numéro]{>,>>,<,<>}[fichier]

Ouvre un nouveau flux

Pour lire/écrire sur un flux : &[numéro]

echo “bonjour”>&4

cat <&4

1 / 5 / 2 0 2 6

1 8

Lecture avancée

exec 3<noms.txt

exec 4<prenoms.txt

while read nom <&3; do

read prenom<&4

echo bonjour $prenom $nom

done

• Ouvre les deux fichiers en lecture

• Lis une ligne de chaque fichier en

alternant

• Affiche le résultat

• On ne peut pas faire ça simplement avec

while read var ; do … done < fichier

1 / 5 / 2 0 2 6

1 9

Les pipes (1/3)

mkfifo nomdufichier

echo bonjour > nomdufichier

read valeur < nomdufichier

➢ Crée un nouveau fichier tuyau

➢ Ecris dans le tuyau [ouvre – écrit – ferme]

➢ Lis une ligne [ouvre – lis – ferme]

Les ouvertures (lecture et écriture) sont

bloquantes s’il n’y a personne au bout du fil.

1 / 5 / 2 0 2 6

2 0

Les pipes (2/3)

• Problèmes quand on ouvre et on ferme un tuyau en lecture quand quelqu’un écrit dessus.

• Solution : toujours garder un lecteur et un écrivain avec :

mkfifo nomdufichier

exec 4<>nomdufichier

• A partir de maintenant toutes les ouvertures sont immédiates.

1 / 5 / 2 0 2 6

2 1

Les pipes (3/3)

• « Chez Linux on a des petits programmes qu’on assemble pour faire des trucs cools, pas

un gros machin compliqué »

- L’art de la guerre, Sun Tzu

• Pour rediriger le flux 1 (stdout) de proc1 vers le flux 0 (stdin) de proc2 :

proc1 | proc2

1 / 5 / 2 0 2 6

2 2

Quand on a plusieurs processus
C'est la cata

Petite mise en situation

Fichier transaction.sh

#!/bin/bash

read argent < comptes_minet.txt # lit

argent=$(expr $argent + "$1") # traite

echo $argent > comptes_minet.txt # écrit

Fichier comptes_minet.txt :

───────────────────

$ transaction.sh 50

$ transaction.sh 1

argent = 100

argent = 100

argent = 150

argent = 101

100150101

Section critique (1/2)

• Définie pour chaque ressource (fichier,

appareil, …)

• AVANT la première lecture

• APRÈS la dernière écriture

• Un seul acteur peut se trouver dans la

section critique d’une ressource à la fois

pour éviter les situations de concurrence

1 / 5 / 2 0 2 6

2 5

Fichier transaction.sh

#!/bin/bash

…

read argent < comptes_minet.txt # lit

argent=$(expr $argent + "$1") # traite

echo $argent > comptes_minet.txt # écrit

…

Section critique (2/2)

• Deux programmes magiques :

P.sh et V.sh

• P.sh ne peut pas terminer tant que le lock

existe encore

• Attention à bien relâcher les locks même

quand le programme se termine mal (exit)

1 / 5 / 2 0 2 6

2 6

Fichier transaction.sh

#!/bin/bash

./P.sh comptes_minet.txt.lock

read argent < comptes_minet.txt # lit

argent=$(expr $argent + "$1") # traite

echo $argent > comptes_minet.txt # écrit

./V.sh comptes_minet.txt.lock

Les signaux

• SIGINT (CTRL + C)

• SIGTERM [9] (envoyé par kill)

• SIGKILL (meurt)

• SIGSTOP (CTRL + Z)

• SIGCONT (fg ou bg)

• SIGUSR1 / SIGUSR2 (libre)

• Interrompt le programme en cours pour

gérer le signal

• kill –[SIGNAL] [pid ou %job]

• trap ‘commande’ [SIGNAL]

1 / 5 / 2 0 2 6

2 7

1 / 5 / 2 0 2 6

2 8

https://formations.minet.net/

Lien du TP:

https://wiki.minet.net/fr/mini_tp_formation/linux/bash

	Slide 1: Révisions Bash
	Slide 2: Le terminal
	Slide 3: Les processus
	Slide 4: Créer un processus
	Slide 5: Les chemins
	Slide 6: Naviguer le système de fichiers
	Slide 7: Les types de fichiers
	Slide 8: Les liens
	Slide 9: La variable $PATH
	Slide 10: Les scripts bash
	Slide 11: Créer un fichier bash
	Slide 12: Créer un fichier bash (2)
	Slide 13: Les variables en bash
	Slide 14: Le Branching
	Slide 15: Quesque $1?
	Slide 16: Les loops
	Slide 17: Interagir avec les fichiers
	Slide 18: Les flux
	Slide 19: Lecture avancée
	Slide 20: Les pipes 🤨 (1/3)
	Slide 21: Les pipes 🤨 (2/3)
	Slide 22: Les pipes 🤨 (3/3)
	Slide 23: Quand on a plusieurs processus
	Slide 24: Petite mise en situation
	Slide 25: Section critique (1/2)
	Slide 26: Section critique (2/2)
	Slide 27: Les signaux
	Slide 28

