Révisions Bash

PRESENTE PAR PSDERS ET LITEAPP

L e terminal

« Unterminal est une interface avec le systeme dexploitation qui permet de configurer et
de lancer des programmes

- |l transmet ce que l'utilisateur tape via le flux stdin, et il affiche a l'écran les données que
les programmes écrivent dans les flux de sortie stdout (résultats) et stderr (erreurs).

| es processus

 Lorsque lon lance un programme, ['0S crée ce qu'on appelle un "processus”

« Un processus contient:
« Une zone de mémoire dédiée (pile, tas, le programme lui-méme)

- Une sorte "détat” (a quelle instruction on se trouve, quel est 'état des registres du programme)

« Un identifiant unique (PID (process ID))

« D'autres choses plus complexes..

« Le travail de 0OS est de faire tourner tous ces processus “en parallele”

Créer un processus

« Pour créer un processus, il suffit dexécuter la ligne suivante dans un terminal:

le_programme argumentl argument2 argument3 ...

 Le premier paramétre est le "nom” du programme (un chemin vers ce dernier, si on ne le

trouve pas, rien ne se passe)

« On peut mettre autant d'arguments que lon veut, cest au programmme de comprendre ce
gu'ils signifient. Chaque argument est séparé d'un espace.

L es chemins

« Un chemin permet de se déplacer et de désigner les fichiers dans un systeme de fichiers.
Il y a deux types de chemins: les chemins absolus et les chemins relatifs
- Un chemin absolu sécrit comme ceci:
« /mon/chemin/absolu pour un chemin partant de la racine de lordinateur
« ~/mon/chemin/absolu pour un chemin partant de la racine de l'utilisateur (Attention, c'est différent!)
« Un chemin relatif sécrit comme cela:
« _/mon/chemin/relatif
« mon/chemin/relatif

« Dépend de ou on se trouve dans le systeme de fichier!

1/5/2026

Naviguer le systeme de fichiers

 Pour naviguer le systeme de fichier, on peut isoler 3 commandes indispensables:

- s (list directory contents): Imprime dans le terminal tous les fichiers dans le “current working

directory” ou dans le directory spécifié dans un argument.
- cd (change directory) change le "current working directory’

« pwd (print working directory): donne le chemin (path) absolu du “current working directory’

1/5/2026

_es types de fichiers

- Directories (répertoires)

« Des cas particuliers:
"." le répertoire actuel

- "."larépertoire parent

« Les fichiers (de la donnée brute: du texte, un programme, une image...)

« Des cas particuliers:
« Liens symboliques et physiques
« Sockets /Pipes
« On parle pas de /dev

1/5/2026

L es liens

ln —-s source output Symlink (target va juste pointer vers source)

1/5/2026

| a variable $PATH

- |l existe une variable globale associée au terminal que lon appelle PATH qui contient des
chemins. Tous les fichiers de ces chemins sont accessibles depuis n'importe ou dans le
terminal.

- Exemple: /bin (ou se trouvent ls, mv, cp, mkdir, echo, kill...)

1/5/2026

L es scripts bash

Un fichier comme un autre (par convention, ces fichiers finissent en .sh)

Regroupe une liste de commandes a exécuter

Peut étre exécuté par un utilisateur (comme un programme?)

On peut récupérer la sortie pour l'utiliser autre part avec la syntaxe $(echo "bonjour")

1/5/2026

Créer un fichier bash

. Etape 1: créer le fichier

- Par exemple: touch my_bash_file.sh

. Etape 2: ouvrir le fichier et écrire ce que lon veut
- Par exemple: |EaVANVEEY

echo "Proot"

. Etape 3: autoriser lexécution du fichier

« Par exemple: chmod +x my_bash_file.sh (par défaut, on ne peut pas éxécuter n'importe quel

fichier sur lordi | (encore heureux))

1/5/2026

11

Créer un fichier bash (2)

. Etape 4: lancer le programme

« Par exemple: ./my_bash_file.sh

1/5/2026

12

| es variables en bash
#!/bin/bash

PAS D'ESPACE AU NIVEAU DU SYMBOL '='" !1!]
a=10

Imprime la lettre a
echo a

Imprime 10
echo $%$a

Imprime rien (une ligne vide)
echo $b

1/5/2026

e Branching
#!/bin/bash
number=%$1

if [-z $number]; then
echo "Give me a number!" >&2
exit 1

Fi

if [$number -eq 42]; then
echo "Based."

elif [$number -eq 420 —-o $number -eq 69]; then
echo "Cringe."

else

echo "Basic."
fi

1/5/2026

#!/bin/bash

letter=$1

if [-z $letter 1; then
echo "Give me a letter!" >8&2

exit 1

fi

if [${#tletter}? -ne 1]; then
echo "Just one letter please!" >&2

exit 1

fi

case $letter
[a-z])
echo
[A-Z])
echo
[0-9])
echo
*)

echo

in

"Small alphabetical character.";;
"Big alphabetical character.";;
"Number gang"; ;

"Something else";;

Quesque $17

- $1, $2, $3 .. Les arguments passés au programe ($0 le chemin spécifié du programme)
« $# Le nombre d'arguments du programme

« $7 Le return code du dernier processus qui a fini de sexécuter (0 si tout va bien)

« $% Le PID du shell

- $! Le PID du dernier programme mis en arriere-plan

« $@ renvoie la liste $1 $2 $3 ..

1/5/2026

15

L es loops
#!/bin/bash #!/bin/bash
while [$# -ne 0]: do file=$1
echo $1
shift if [-z $file 1; then
done echo "I need a file path!" >&2
ex1t 1
Le shift décale tous les $1, $2, $3 etc... fi
vers la gauche, et mets a la poubelle
$1.. TRES PRATIQUE!! while read -r line; do
Le shift ne modifie pas $0 echo $line

done <"$file"

1/5/2026

Interagir avec les fichiers

- 3 opérations
- > écrire en écrasant le contenu =2cho " 1'|:~'I::--::|r|j our" =>> fichier.txt
« >> ajouter a la fin du fichier Tl gl "l:-|::-r|j our" > Tichier.txt
» <lire le fichier ead salutations < fichier.txt

1/5/2026 17

| es flux

« 3 flux « standards » :
« stdin (0) — entrée
« stdout (1) — sortie

« stderr (2) — sortie

« On peut en ajouter d'autres

1/5/2026

exec [numérol{>>> < <>}[fichier]

Quvre un nouveau flux

Pour lire/écrire sur un flux : &numéro]

echo "bonjour’>&4
cat <&4

18

| ecture avanceée

exec 3<noms.txt Quvre les deux fichiers en lecture

exec 4<prenoms.txt « Lis une ligne de chaque fichier en

while read nom <&3; do alternant
read prenoms<&4 . Affiche le résultat
echo bonjour $prenom $nom

done
« On ne peut pas faire ca simplement avec

while read var ; do ... done < fichier

1/5/2026 19

L es pipes & (1/3)

mkfifo nomdufichier » Crée un nouveau fichier tuyau
echo bonjour > nomdufichier > Ecris dans le tuyau [ouvre - écrit - ferme]
read valeur < nomdufichier > Lis une ligne [ouvre - lis - ferme]

Les ouvertures (lecture et écriture) sont
bloguantes s'il n'y a personne au bout du fil.

1/5/2026 20

| es pipes & (2/3)

 Problemes quand on ouvre et on ferme un tuyau en lecture quand quelgu’'un écrit dessus.
- Solution : toujours garder un lecteur et un écrivain avec :

mkfifo nomdufichier
exec 4<>nomdufichier

- A partir de maintenant toutes les ouvertures sont immédiates.

1/5/2026

21

L es pipes & (3/3)

- « Chez Linux on a des petits programmes gu'on assemble pour faire des trucs cools, pas
un gros machin compliqué »

- L’art de la guerre, Sun Tzu

« Pour rediriger le flux 1 (stdout) de procl vers le flux 0 (stdin) de proc?2 :

procl | proc?

1/5/2026

22

(Quand on a plusieurs processus

C'est la cata

Petite mise en situation

Fichier transaction.sh Fichier comptes_minet.txt :

=)) #i/vin/bash 160

read argent < comptes_minet.txt # [it
argent=$(expr $argent + "$1") # traite
echo $argent > comptes_minet.txt # écrit

$ transaction.sh b0 argent = 180

» $ transaction.sh 1 argent = 100

Section critique (1/2)

Fichier transaction.sh

#!/bin/bash

i

read argent < comptes_minet.txt # [it
argent=$(expr $argent + "$1") # traite
echo $argent > comptes_minet.txt # écrit

7.

1/5/2026

Définie pour chaque ressource (fichier,
appareil, ...)

AVANT la premiere lecture
APRES la derniére écriture

Un seul acteur peut se trouver dans la
section critique d'une ressource a la fois
pour éviter les situations de concurrence

25

Section critique (2/2)

Fichier transaction.sh « Deux programmes magiques :

#!/bin/bash P.sh et V.sh
/P.sh comptes_minet.txt.lock « P.sh ne peut pas terminer tant que le lock
read argent < comptes_minet.txt # [it

argent=$(expr $argent + "$1") # traite

echo $argent > comptes_minet.txt # écrit

existe encore

« Attention a bien relacher les locks méme

/V.sh comptes_minet.txt.lock quand le programme se termine mal (exit)

1/5/2026 26

« Interrompt le programme en cours pour

[es signaux

gérer le signal
« kill -[SIGNAL] [pid ou %job]
. trap '‘commande’ [SIGNAL]

« SIGINT (CTRL + C)

« SIGTERM [9] (envoyé par kill)
« SIGKILL (meurt)

« SIGSTOP (CTRL + 7)

« SIGCONT (fg ou bg)

. SIGUSR1 / SIGUSR? (libre)

1/5/2026 27

[m]
[m]: ¥

https://formations.minet.net/

[=]

1/5/2026

Lien du TP:

https://wiki.minet.net/fr/mini_tp_formation/linux/bash

28

	Slide 1: Révisions Bash
	Slide 2: Le terminal
	Slide 3: Les processus
	Slide 4: Créer un processus
	Slide 5: Les chemins
	Slide 6: Naviguer le système de fichiers
	Slide 7: Les types de fichiers
	Slide 8: Les liens
	Slide 9: La variable $PATH
	Slide 10: Les scripts bash
	Slide 11: Créer un fichier bash
	Slide 12: Créer un fichier bash (2)
	Slide 13: Les variables en bash
	Slide 14: Le Branching
	Slide 15: Quesque $1?
	Slide 16: Les loops
	Slide 17: Interagir avec les fichiers
	Slide 18: Les flux
	Slide 19: Lecture avancée
	Slide 20: Les pipes 🤨 (1/3)
	Slide 21: Les pipes 🤨 (2/3)
	Slide 22: Les pipes 🤨 (3/3)
	Slide 23: Quand on a plusieurs processus
	Slide 24: Petite mise en situation
	Slide 25: Section critique (1/2)
	Slide 26: Section critique (2/2)
	Slide 27: Les signaux
	Slide 28

